Skip to main content

Hannezo Group

Physical Principles in Biological Systems

During embryo development, cells must “know” how to behave at the right place and at the right time. The Hannezo group applies methods from theoretical physics to understand how these robust choices occur.

The Hannezo group is particularly interested in design principles and processes of self-organization in biology, at various scales, in close collaboration with cell and developmental biologists. Their methods include tools from solid and fluid mechanics, statistical physics as well as soft matter approaches. Examples of problems that the group is working on – at three different scales – include: 1) how do cytoskeletal elements, which generate forces within cells, self-organize to produce complex spatio-temporal patterns? 2) how do cells concomitantly acquire identities and shape a tissue during development? and 3) how does complex tissue architecture derive from simple self-organizing principles, for instance during branching morphogenesis (in organs such as the kidneys, mammary glands, pancreas, and prostate) as a prototypical example.




Team


Current Projects

Stochastic branching in mammalian organs | Active fluids and cell cytoskeleton | Models of fate choices of stem cells during homeostasis and embryo development


Publications

Vercruysse E, Brückner D, Gómez-González M, Remson A, Luciano M, Kalukula Y, Rossetti L, Trepat X, Hannezo EB, Gabriele S. 2024. Geometry-driven migration efficiency of autonomous epithelial cell clusters. Nature Physics. View

Krämer JC, Hannezo EB, Gompper G, Elgeti J. 2024. Mechanically-driven stem cell separation in tissues caused by proliferating daughter cells. SciPost Physics. 16(4), 097. View

Arslan FN, Hannezo EB, Merrin J, Loose M, Heisenberg C-PJ. 2024. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Current Biology. 34(1), 171–182.e8. View

Dunajova Z, Prats Mateu B, Radler P, Lim K, Brandis D, Velicky P, Danzl JG, Wong RW, Elgeti J, Hannezo EB, Loose M. 2023. Chiral and nematic phases of flexible active filaments. Nature Physics. 19, 1916–1926. View

Grober D, Palaia I, Ucar MC, Hannezo EB, Šarić A, Palacci JA. 2023. Unconventional colloidal aggregation in chiral bacterial baths. Nature Physics. 19, 1680–1688. View

View All Publications

ReX-Link: Edouard Hannezo


Career

Since 2017 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2015 – 2017 Sir Henry Wellcome Postdoctoral Fellow, Gurdon Institute, Cambridge, UK
2015 – 2017 Junior Research Fellow, Trinity College, University of Cambridge, UK
2014 Postdoc, Institut Curie, Paris, France
2014 PhD, Institut Curie and Université Pierre et Marie Curie, Paris, France


Selected Distinctions

2019 EMBO Young Investigator Award
2019 ERC Starting Grant
2015 Wellcome Trust Fellowship
2014 Young Researcher Prize of the Bettencourt-Schuller Foundation
2014 Trinity College Junior Research Fellowship
2010 PhD grant from the French Ministry of Research


Additional Information

Download CV
Open Hannezo group website
Physics & Beyond at ISTA



theme sidebar-arrow-up
Back to Top